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Abstract: We analyse a difference scheme for the solution of the incompressible Navier-Stokes equations on
curvilinear overlapping grids in two and three space dimensions. The method solves the momentum equations for
the velocity coupled to a Poisson equation for the pressure. The discretization in space can be either second or
fourth order accurate. A term proportional to the dilatation (divergence of the velocity) is added to the pressure
equation to help keep the discrete dilatation close to zero, a commonly used device. We choose the coefficient of
this dilatation term to be is proportional to vh~2 where v is the kinematic viscosity coefficient and h is the local
mesh spacing. The analysis in this paper shows why this potentially large term does not degrade the accuracy of
the method. Numerical results are given showing results from the second and fourth-order accurate methods.
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1 Introduction

In this paper we analyse a method that we have developed for the numerical solution of the incompressible Navier-
Stokes equations on overlapping grids in two and three space dimensions. We solve the momentum equations for the
velocity coupled to a Poisson equation for the pressure. The method uses a fairly standard discretization with the
important difference being in the choice of boundary conditions that results in a either a second-order or fourth-order
accurate method on curvilinear grids. See [4] and [5] for further details. As noted in those papers we find it useful,
although not necessary, to add an extra term to the pressure equation that is proportional to the discrete dilatation
0p &~ V -u. This term helps to damp the dilatation that may be created by truncation errors or that may exist
in the initial conditions. This device has been used my many researchers in the past, see for example the work of
Harlow and Welch [3] and the remarks in Roache [7]. We choose the coefficient of this damping to be proportional to
vh~? where v is the coefficient of the kinematic viscosity and h is the local grid size. When v = 1 for example, this
coefficient is O(h~2) and multiplies the discrete dilatation d;, which in practice is O(h*) for a fourth order method
and O(h?) for a second order method. Thus we are adding a term to the pressure equation which is O(1) in the
second order case and O(h?) in the fourth order case. In principle this term could degrade the accuracy of the
solution or the stability of the method. In this paper we extend the analysis in [5] to consider the effect of adding
this term and show that the solution remains accurate and stable. Numerical results are given that illustrate the
improved results that can be obtained by adding the damping term.

Background: The work described here is motivated by the desire to be able to solve the incompressible Navier-
Stokes equations to higher order accuracy on complicated regions in two and three space dimensions. We choose to
use curvilinear overlapping grids such as those created by the program CMPGRD [2]. An overlapping grid consists
of a set of logically rectangular curvilinear component grids that cover a domain and overlap where they meet. The
solution is matched at the overlapping boundary using interpolation. With overlapping grids it is possible to create
smooth grids for complicated geometries - with a smooth grid it is possible in a straightforward manner to obtain
higher-order accurate solutions. On a single curvilinear grid it is possible to devise a scheme (such as projection
methods based on staggered grids [1] ) whereby a discrete approximation to the dilatation d, &~ V - u is zero up to
round-off errors. This is difficult to do on overlapping grids so instead we use a method where the discrete divergence
is small O(h?) for a g—th order accurate method, but not precisely zero. A commonly used device to damp any
dilatation that may be generated through truncation errors or that may exist in the initial conditions is to add a
large term proportional to the dilatation to the pressure equation. In practice this term seems to work very well.
From the theoretical point of view, however, it would be nice to understand how the addition of such a term affects
the accuracy and stability.

In primitive-variables the initial-boundary-value problem (IBVP) for the incompressible Navier-Stokes equations
is

Ou/dt+ (u-V)u+Vp = vAu+F,

V-u = 0, for x € Q
B(u,p) = g for x € 002
u(x,0) = f(x) with V.-f=0 forxeQ

Here u = (u1, u2,us3) is the velocity, p is the pressure,  is a domain in R", n = 2 or n = 3 and 912 is the boundary of
Q. There are n boundary conditions denoted by B(u,p) = 0. On a fixed wall, for example, the boundary conditions
are u = 0. We assume that all data are sufficiently smooth. An alternative form of this IBVP is based on the
velocity-pressure formulation of these equations

Ou/dt+ (u-V)u+Vp = vAu+F, for x €
Ap+ J(u,Vu) —a(x)V-u = V-F for x €
B(u,p) = g for x € 002 (1)
V-u = 0 for x € 0N
u(x,0) = f(x) with V-f=0 forxeQ

where

J(u7 Vu) = Z Vum “Ug,,
m=1

The equation for the dilatation, V - u = 0, has been replaced by an elliptic equation for the pressure and an extra
boundary condition on the dilatation has been added. (The boundary condition V - u = 0 can be thought of as the
boundary condition for the pressure equation). These two formulations are equivalent, at least for solutions that are
sufficiently smooth. We have also added the term «(x)V - u to the pressure equation. Although in the continuous
case this term has no effect, in the discrete case this term will be important.



The difference approximation we study is a discretization of the velocity-pressure formulation

dU,’/dt +(U; - Vp)U; + VP, = vALU; + F(x;,t), forx; € Qy
ApQ; — a;Vy - U; + J(U;, VR, U;)) = Vg -F(x;,t) for x; € Qp,
By(Ui, P;) = g(xi,t) for x; € O, (2)
Vi-U; = 0 for x; € 09y,
U(x;,0) = f£(x;) for x; € Qp

Here (U, P;) is the numerical approximation to (u,p) at the grid point x; = x;, 4,4, and Vj, A, are difference
approximations to V and A. Later in the paper we will discuss the form of these numerical approximations as well
as any “numerical” boundary conditions that are required to complete the specification of the problem.

The easiest way to understand why the damping term works is to consider the equation satisfied by the dilatation.
It will be sufficient to consider the continuous formulation (1). Taking the divergence of the momentum equations
and combining with the pressure equation results in the following equation for the dilatation, § = V - u,

05/0t+ (u-V)6 = —a(x) 6 + vA 4. (3)

Since the boundary condition for ¢ is § = 0 we see that § = 0 if it is initially zero. If § is non-zero at time ¢ = 0 then
by (3) it will decay to zero in time, exponentially fast, if @ > 0. A similar equation holds in the discrete case although
there will be extra forcing terms coming from truncation errors. In the discrete case we choose a(x) o vh=2. The
reason for this choice of « is that we wish to have a as large as possible but not so large that the time step At must
be taken significantly smaller. From equation (3) we see that the dilatation only becomes smaller as « is taken larger.
However, it is not clear in the discrete case that the pressure and velocity remain accurate even if the dilatation is
small.

2 Difference approximation

We want to solve (2) by a second or fourth-order accurate difference approximation. One of the advantages of
using overlapping grids to discretize the region  is that it is possible to generate smoothly varying grids even
on complicated domains. This makes it easier to use higher-order methods. Since the component grids can be
“boundary fitted” there is a smooth mapping of the region near smooth portions of the boundary onto a regular grid
with straight boundary. A common analytical tool for studying PDEs near curved boundaries is to first map the
curved boundary onto a half-space. This process is exactly mimicked in the discrete case when one uses boundary
fitted grids. This allows us to reduce the question of stability and accuracy of boundary conditions to the study of
a half-space problem.

We now describe in more detail how we discretize the equations. For clarity we only consider the case of a
uniform grid on a square. The more general case of discretizing on a curvilinear overlapping grid is treated in [4].
We introduce a grid-size h > 0 and gridpoints x; =i h = (i1,i2)h, i, = £1,%2,.... Let E; be the shift operator in
direction j,

EvUiyio = Uin1,is 5 E2Uiy i, = Uiy ig 1
and
1

1 _
E;j-E;') , Dyj=5(E;=1) , D—jZE(I—E-l)

Dy = p

2h(
and approximate the first and second order differential operators by

Dyj = Do;(I - 5h D+J —j) = 0/0z;
Ah]‘ = D+] —j (I /8 D+] ) 62/6111'
These operators are fourth-order approximations when 8 = 1 and second order when 8 = 0. Using the notation
U;(t) = (U1,4,Us,;) the discrete operators appearing in (2) take the form
ViP; = (Dp1 P, DyaP)7, Vi - U; = DpUy s + DpoUs g,
ARU; = (Api+AR)U

Now we will specify, more precisely, the form of our discrete approximation. For clarity we only indicate the form
of the equations assuming that the boundary corresponds to i3y = 0. For convenience we introduce two fictitious



(ghost) points at i3 = —1,—2. Let Iy be the set on integers corresponding to the indices of interior and boundary
points, and let I_5 be the set corresponding to the interior, boundary and fictitious points. The interior equations
are discretized up to and including the boundary.

dUz/dt + (Uz . Vh)U,' + VP, = vA,LU; + F(Xi,t), for 1 € I (4)
AhQ,’ —a; V- U; + J(UZ,V,LU,) = V- F(Xi,t) for 1 € I

In practice we choose a; to be proportional to v divided by the square of the local mesh spacing. For a uniform grid
this becomes
ay; = Cd v h_2

where the constant Cy is usually taken to have a value of about 1. The values of (U;, P;) at the fictitious points,
i1 = —1 (second-order case) or at i1 = —1,—2 (fourth-order case) will be determined by the boundary conditions.

The approximation of the boundary conditions coming from the continuous problem is given by (here we take
the boundary condition B(u,p) = 0 to be simply u = g)

U;=g(xi), Vi-U;=0 fori; =0 (5)

The solution of the difference approximation is now uniquely determined in the second-order case. In the fourth-
order case we must specify three extra “numerical” boundary conditions at each boundary. We use a fourth-order
approximation to 9,(V - u) = 0 and extrapolation conditions for P and Us

ApUii +DpiDpaUs; = 0
D?{—lDleQ,i = 0 for 7:1 =0. (6)
D2, D>, P, = 0

These and other numerical boundary conditions are discussed in further detail in [5]. Equations (4)-(6) thus define
our numerical scheme. See [4] for a description of how to efficiently solve these equations.

3 Stability

We now discuss the stability of the semi-discrete approximation (4)-(6). We will not discretize time. In [4] we use
a method of lines approach to discretize the problem in time; we conjecture that any dissipative time discretization
method can be used and the resulting fully discrete problem will be stable provided the semi-discrete problem is
stable. For simplicity we will drop the nonlinear terms (which should behave as lower order terms and not affect the
stability) and consider the resulting Stokes equations, with v = 1, in two space dimensions. We consider the IBVP
on the strip 0 < z; < 1 and look for solutions that are periodic in zo with period 1. We introduce a grid of N + 1
points in each direction so that z; = (i1,42)h with h = 1/N. We make the following assumption on a.

Assumption 1 We will assume that a = a®/h* where 0 < h < 1 and a > 0 is an order 1 constant.

Assuming that the continuous problem has a smooth solution, (u,p), we introduce it into the difference equations
and obtain an equation for the error W; = U; — u(x;,t), R; = P; — p(x;,t),

dWi/dt +VyR; = AYW;+hiF; i€l
AhRi —Q Vh : Wz = hq(F2 + 04F3) 1 € IO (7)
W;(0) = 0, iel_y.
with boundary conditions

W; = higgy,,

Vi-W; = hig,,
D2,D?\R; = higs;, § foriy=0,N (8)

D3,D*\Wy; = higs;,

ApiWii+ DpiDpaWa; = higs,

Here q equals 2 or 4 depending on the accuracy of the discretization. The forcing functions, Fy, F»>, F3 and §,, are
functions of (u,p) and their first few derivatives which are assumed to be all O(1).

To show the stability and accuracy of the initial-boundary-value problem (7)-(8) we will proceed in two stages.
We first obtain estimates for a pure initial-value problem on a periodic domain satisfying the forcing h9F; and



hi(Fy + aF3) in (7). After subtracting this solution from the solution to (7)-(8) the resulting problem will have zero
forcing on the interior equations and will have inhomogeneous terms on the boundary conditions of the same form
at (8). This new problem can be studied with mode-analysis.

To be specific, we study the following initial-value problem with periodic boundary conditions

dW?/dt + V,R? = A WP +hIF? eIl
ARRP —a V), -WP = hi(FP+aF?) icl® 9)
W;(0) 0, il

The domain [0, 1] corresponding to Iy has been extended to a larger domain of length 27, [0 —d,1+d],d=7—1/2,
corresponding to If. The forcing functions satisfy F¥ = F;, F} = F,, and F} = F; for i € Iy. The functions F?, FY
and FY can be extended to the entire domain I§ so that they become periodic and so that the extended functions
and their divided differences are bounded by a constant times the original functions and their divided differences
(see [6], for example, for a description of how to do this extension).

In section 3.1.2 we prove the following lemma.

Lemma 1 The solution to (9) and its divided differences, can be estimated in terms the functions h?F, h1F,, hi1F;
and their divided differences. These estimates will be O(h?) with bounds that are independent of o > 0.

If we subtract the solution (WP, RP) from the solution of (7)-(8) then we are left with the following problem
problem for V; = W; — W? and Q; = R; — R?,

dV,'/dt—f—VhQi = AhVi 1 € I
AhQi —Q Vh . Vz =0 1€ IO (10)
Vi) = 0, i€l
with boundary conditions

V; = higy; - W? = higo i,

Vin-Vi = hig; — V- -W? = hig ;,
D2,D?,Qi = hijs;—D2,D? R =higy; § for iy =0,N (11)

D3,D*\Va; = higs; — D3, D> Wy, = higsi,

ApiVii+ DpiDpaVoi = h9Gs; — ApiWii+ DpaDpaWa i = higy;,

All the terms involving W? that appear in the right-hand sides of the boundary conditions are O(h?).
To analyse the stability of this last system we will Laplace transform in time (dual variable s) and expand the

solution in a Fourier series in the x5 direction (dual variable w), giving the following equations for Vi, = Vi, (w, s)
and P;, = P;, (w, s)

X R sVi, + (Dh1,ia2(w)){3i1 = ApaVi, =@V i =0,1,...,N (12)
AhIPi1 _bQ(w)PM _a(Dh177;a2(w) 'V’i1 =0 7:1 :0717"'7N
with boundary conditions

\:]’h = hqéOa
(Dh1yiaz(w)) - Vi, = hi,

D2,D%,P;, = hig,, o for iy=0,N (13)
D—21—1D2—1‘A/2,i1 = hqg37
Ap1Vii, +ia2(w) DpiVai, = higa,

Here as(w) = w + O(h?) and bs(w) = w? + O(h?) are defined by

Dpe™® = jag(w)e*™

Apoel®i = —by(w)ei .

The solution to the IBVP (7)-(8) will be stable provided that we can get an estimate for the solution of (12)-(13)
in terms of gy and gy, X .
VIR + 1Pl < C{l&o] + (91| + |g2] + 93] + [9a}

for all s with Re(s) > +, for some constant «. Here || - ||;, is some appropriate discrete norm. The method will be
qt"-order accurate if C' = O(h?). In general, it is usually very difficult to show that higher-order accurate difference
approximations for IBVP’s are stable. It is thus convenient to introduce the concept of local stability.



Definition 1 The solution to the Laplace and Fourier transformed IBVP (12)-(13) will be called locally stable if it
is stable for hv/s + w? K 1, where s is the Laplace transform dual variable and w is the Fourier expansion frequency
that appears when the equations are transformed in the xo direction.

The main result of this paper is summarized in the following theorem.

Theorem 1 The solution to (7)-(8) is locally stable for a = a®/h* with a > 0 an order 1 constant. The solution is
fourth-order accurate if the fourth-order discretization is used (8 = 1), and second-order accurate if the second-order
discretization is used (8 =0).

Local stability is usually much easier to determine than global stability because we can use the assumption
hv/'s + w? < 1 to allow us to obtain explicit representations for the eigenvalues and eigenvectors of system (12). A
scheme that is locally stable but not globally stable is easy to recognize in computations because the unstable modes
must occur at high frequencies in space and/or time. Therefore in any computations the unstable nature of the
method will quickly become apparent. See the discussion in [5] for further remarks on this point.

3.1 Estimates for periodic boundary conditions

In this section we consider the the initial-value problem (9). We obtain estimates for the solution and its divided
differences that are independent of a > 0. To begin with it will be instructive to look at the continuous problem.
The discrete problem is very similar. For ease of notation we make the replacements U; « W?¥, Q; « RY, F «+ F,
and aG; <+ Fi + aF5 in (9)

3.1.1 Estimates in the Continuous Periodic Case

The problem we consider is
wu+Vp = Au+F,

Ap—aV-u aG, (14)

with initial conditions
u(x,0) = f(x) (15)

We solve this problem by Laplace and Fourier transform. We will see how the solution behaves as a function of the
damping factor a. After Laplace transforming in time and Fourier transforming in space we obtain equations for the
transform variables 11 = i(w, ) and p = p(w, s)

—Wa+F
—wPp—ciw-u1 = oG

si—f+ iwp
where w = (w1,ws) and w = |w| = y/w - w. By applying iw- times the first equation and subtracting the second we

obtain an expression for the transformed dilatation

aiG +w - (F + 1)
stw+a

w-u= ,

and thus (for w # 0)

LA A p (B4 f .
a4 = o8 G (E®+D  (ew (Fife

wstw+a s+ w? (s +w? + a)(s + w?)
aG s+ uw? ioe, - (F +f)

po= CwWrst+wlta wist+wta)’

)

where e, = w/w. For w = 0 we assume that (0, s) = p(0,s) = 0. Thus we see that the solution and its derivatives
have bounds independent of «, for any a > 0.



3.1.2 Estimates in the Discrete Periodic Case

We now consider the initial value problem for the discretized equations on a periodic domain. We solve the problem
by Laplace and discrete Fourier transform. We will see how the solution behaves as a function of the damping factor
a.

We discretize the domain [0, 27] x [0, 27] by introducing a mesh with N; x Ny grid-points. Let h; = 27/N; be
the grid spacing in direction j. We want to solve

dU;/dt+ VP, = ARU; +F(x,t), (16)
AhPi—OZVh'Ui = aGiJ
with initial conditions
U(x;,0) = f(x;) (17)
Define a = a(w) and b = b(w) by
Vie® > = ja(w)e™@ ™
Aheiw-xi — _b(w)eiw-xi

Note that
a(w) =w+ O0h?) bw)=w?+O(h)

where ¢ is the order of approximation. In particular, for the central discretization the components of a are

in(w;h; 2

aj(w) = Sm(;:ijj) (1 + ?ﬁ sinz(wjhj/Q)) w;j =0,1,...,N; —1
j

while

b(w) = ;4% (1 + D sin uhg /2)) .

where 8 = 0 for second-order accuracy and 8 = 1 for fourth-order accuracy. After Laplace transforming in time and
Fourier transforming in space we have

sU—f+iaP = —pU+F

—bP—qia-U = o@

As in the continuous case we first obtain an expression for the transformed dilatation

W= @iG(a®/b) a-(F+f)
~ s+b+aa?/b  s+b+aa?/b
and the solution then follows
R .a s+b PO aa a-(f‘—|—f')
HU = 2 L (F4+hH-2 T
(s +9) OZZGbs-+-b-i—oa12/b+( +9) b s+b+aa?/b
p o_ oG s+b io a-(F+f)

b s+b+aa?/b b s+b+aa?/b

Thus we see that the solution and its divided differences have bounds independent of a > 0. If the forcing functions
F, G, and f are O(h?) then the solution and its divided differences will also be O(h?).

Remark: The forcing terms G and a - (F + f) represent dilatation being created in the interior of the domain
due to truncation errors. For large a we see that errors generated at time ¢ will be damped quickly in time.

4 Stability analysis with boundaries

We now analyse the stability of the boundary value problem (10)-(11). We can further simplify the analysis by
considering the half-space problem z; > 0 instead of the problem on the strip 0 < z; < 1. To begin with we use
mode analysis to study the continuous problem. We will see how the solution of the boundary value problem depends
on a. We then look at the discrete problem.



4.1 Stability analysis with boundaries - the analytic problem

In this section we consider the continuous half-space problem

w+Vp = Au,
Ap—aV-u = 0, x € H:={x; >0} (18)
u(x,0) = 0,
with boundary conditions
u=u":=(u},u)), V-u=g. (19)

We look for solutions periodic in z5. We Fourier transform the above system with respect to the tangential variables
and Laplace transform it with respect to ¢t and obtain, for Re s > 0 and w real,

(5 +w2)ﬂ+ﬁz = ﬂzz;
(s+wh)d+iwp = Dgg, (20)
w?p — ally +iwd) = Prg,
with boundary conditions
a=1"w,s), d+iwd = gi(w,s). (21)

Here we have used the notation ;7 = z, u = w1, v = us. To avoid any problems with the mode corresponding to
w = 0, we assume that 4°(0,s) = §;(0,s) = 0. Then (z,0,s) = p(z,0,s) = 0 and we need only consider (20)-(21)
for w # 0.

We determine the general solution to (20

(

The particular solutions are determined by

elonging to L. It is of the form

b
4
_ Ajw u
)- > e (I;(j))- (22)

Re A>0

ﬁ> => ~

54 w? — N2 0 A g
0 s+w?— A2 iw b | =0. (23)
a aiw w? — N2 Po

The solutions of the characteristic equation

s+ =M)(s+w+a—-A)(w? -A) =0

AM=-Vs+w? h=-—lw, A=-Vst+wta (24)

The corresponding eigenvectors are given by
a) i e A a® A3/
Go)=() Go)={=) (Go)={we): )

Simple calculations show that

with Re A < 0 are

are divergence free, i.e., ' '

a9\ +iwtd =0, j=1,2
Therefore, o3 is determined by
g1
s+a

03(/\§ —wz)/a =01 — 03=
01,09 are then determined by the inflow condition,

iwud + |wl|ud N iw(=|w|+ Vs + w2 +a)n

01
—|w|(jw] = Vs +w?)  (=|w|(jw] = Vs +w?))(s+a)
Vs +wud —iwud  (W? —Vs+wiVs+w?+a)g
g9 =

+
—lwl(jw] = Vs +w?)  (—|wl(jw] = Vs +w?))(s + )
If g1 # 0, then some dilatation will be created in the interior. For large a, it will decay rapidly producing a boundary

layer. However, the boundary layer will affect the interior through the other components of the solution because
01,09 will depend on o3. However, if g; = 0, then o3 = 0 and the solution of our problem does not depend on a.



4.2 Stability analysis with boundaries - discrete approximation

We are now ready to consider the discrete initial-boundary-value problem on the half plane. We want to show local
stability and thus are interested only in the case that hv/s + w? < 1. Therefore, for simplicity only, we shall not
discretize the tangential derivatives 0/0z,. We proceed in the same way as for the analytic problem. After Laplace
and Fourier transforming we obtain

(s +w?)wW1 + Dp1§g = Apain,
(S + wz)u?z + zwq = Ahlwz, (26)
wztj + Oé(Dhl’Ifll + l.LzJ’UA)z) = Ahltj.
with boundary conditions
w10 = h79;
a0 = h793
Dpaip +iwidng = hig 27)
h4D2+1D31d12,0 = higs
h*D% D% 1q0 = higs
Ap1r,0 +iwDp 120 = higy

For convenience we have renamed the right-hand sides of (11) to be the same as (8). Corresponding to the continuous
case, we try to find solutions of the form
()= (i)
Qv q0

Observing that

h2Ap kY = pok¥,  where po(k) == (”;1)2 (1 - ﬁ%—(”?)Z), (28)
hDp1k” = p1KY, where pi(k):=3(k— 1) (1 - %—(521)2),
we obtain
h2(s + w?) — pa 0 hpy Wo1
0 h2(s + w?) — pa iwh? w2 | =0.
hapy aiwh? h?w? — py do
The characteristic equation is
(125 +w?) = p2) ((h%(s + 0 + @) — p2) (2® — o) + ah®(ps — ) ) = 0. (29)

NOTE: For the analysis to follow we will assume that a is a small parameter, 0 < a < 1, but that a is still much
larger than h, h < a. For example one can take a = h¢ for any small € > 0. This will allow us to obtain explicit
expressions for the discrete eigenvalues and eigenvectors in powers of h and a. Since we can take € as small as we
please, in the end we can still regard a as essentially order 1.

4.2.1 Second-order accuracy: =0
The stability results for the second-order accurate difference approximation closely follow the results in the continuous

case. In the case 8 = 0 there are three roots x; satisfying |k;| < 1 for Re(s)h > 0,

k1 =ML ONR®) | ke =M+ ONR®) , ks=1—-a+ %cﬁ + O(a® + hv/s + w?)

(recall that Ay = —vs + w2, A2 = —|w| and A3 = —v/s + w? + a). The corresponding eigenvectors are
wiD e w@y [l w®y [ @ VItalte?)
MCORS Mol W2t i INET WCIR Mol I B W R iwhy

0 _S 1(1

We have scaled (w(®),§(®)) so the elements are O(1). The solution to the difference equation will be of the form



After applying the boundary conditions we arrive at the system of equations defining o,

N _  p2.1
Wi = higy
A — 2 2 —_ A
a9 = h%gg - Zo =¢g,
~ PSP _ 24
Dy +iwidao = h%4

where to highest order
w )\2 /\3 hz /CL2

Z~ | =M\ iw iwh®/a®

0 0 1

The values for o; are therefore given by

(iwgd — Aaga)h? ( — |lwlha™! + /14 (s + w2)h2a—2)iwh3a—1g1

g + ’
' —|w|(lw] = Vs +w?) —|w|(lw] = Vs +w?)
(M gd + wgd)h? N (wzha_1 —Vs+w?/1+ (s+ w2)h2a—2)h3a_1§1
g ’
’ —|w|(lw] = Vs +w?) —|w[(|lw] = Vs +w?)

2 A
g3 ~ h a1

Thus we see that the discretization is locally stable and second-order accurate. The term §; represents the dilatation
that is created at the boundaries from truncation errors. Notice that o; and o, only depend on h3§;.

4.2.2 Fourth-order accuracy: g =1

In the fourth-order case with 3 = 1 there are six roots x; satisfying |«;| < 1, for Re(s)h > 0. The solution to the

difference equation will be of the form
6 ,
& a(d)
w, e
N = oiki | a o |-
(qu> ; 7% (Q(J))
where the six o; will be determined by the six boundary conditions. We now obtain approximations for the eigenvalues
k; and eigenvectors (w(¥), ¢)7T for hv/s + w? < 1 and a < 1.
Since, for h = 0, the characteristic equation reduces to p3 = 0, the roots are perturbations of the solutions of
p2(p) =0, given by
po(p) =0 : =1, py=7-4/3~1/14.

The three roots near p11 = 1 will be related to the continuous eigenvalues A; while the three roots near ps =7 — 4/3
are the spurious roots. After a perturbation analysis we obtain the following results (recall that Ay = —v/s + w?,

A2 = —|w| and A3 = —Vs+w? + a)

k1 = et O3
ke = "+ O(\3R?)
1 1
k3 = l—a+ §a2 - —a3 + O(a* + hy/s + w?) = e’ 4 O(a* + hy/5 + w?)

Ky = /,L2+/,L2 h\/s—}—w2 +O( h\/s—f—w2

1
ks = pe(l+ a—|——a )+ O(a® + hv/s + w?)

2
1
ke = ,u(l—ia+—a )+ O(a® + hv/s +w?)

The corresponding eigenvectors are

' - =h 1+ 2(s 4+ w?)
& w w@ [wl w® a
(q‘”)N v (q(”)N 5 (q“’)N iwhs ’
- T
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— Ooe
O

(ﬁ,@t) ) iw(h : (vAv(5) ) (vAV(e) )
(4) | ~ | —P1lp2 ) Gy |~ ) 6 |~
q 0 q 4 -1

Note that p; (u2) = 4v/3. After applying the boundary conditions we arrive at the system of equations defining o;,

o = h'gy h*gq
bro = WG X
Dyt +iwae = b1 . h* g,
1100 + W, ol Lz =g=| 7
h4D_2i_1D2_1UJ2,0 = h4g3 d g h4gg
WD DZig = hlg h*gs
Ap 11,0 +iwDptag = h*gy h* g4
where to highest order
iw A2 A3h?/a? iwh h/a h/a
-\ iw iwh?/a? —p1(p2) 0 0
0 0 1 iw(p1 (k1) — p1(p2)) pi(ks)/a pi(Ke)/a
7 ~
=APht dwAint  iwh?a?® —p1 () (kg — 2 + kg 1)? 0 0
0 sA3ht —a* 0 (ks —24+kK5 )2 —(kg—2+rKg")?
0 0 —a/h  iw(p2(ka) = pr(p2)pi(k4)) [l pa(ks)/(ah) p2(ke)/(ah)

After some straightforward but tedious manipulations, we obtain, to leading order, the solution of these equations

ng + i§3 5 —9

o1 ~ q—————
! 1|u1| —Vs+w?
iVs+w? wirtifs L5 _o
g9 ~ (1 h’a
w lw| — Vs + w?

o3 ~ c¢1(iwgs + g3)h4a_1 + cogshat
g4 C3g2h4
oy ~ C4iw§2h4 + 05g4h5

O ~ C4iwg2h4 + Cﬁg3h4 + C5g4h5

where ¢, are constants satisfying |c,| < 2, (c1 =~ .0472, ¢o = —1.02, ¢c3 & —.001, ¢4 ~ —.00347, ¢5 =~ .072,
ce & —.0069 ). Thus we see that the method is locally stable and fourth-order accurate if a =~ 1.

5 Numerical results

In this section we present some results from a computer program that has been written to solve the incompressible
Navier-Stokes equations in complicated geometries in two and three-space dimensions. The grid construction program
CMPGRD [2] is used to generate an overlapping grid for the region of interest. The solution is advanced in time
by a method of lines approach. The velocity is advanced explicitly (with a multi-step method, for example) and
at each stage in the time step the pressure is computed from the elliptic equation for the pressure. The pressure
equation is solved either with sparse direct solvers, sparse iterative solvers or the multigrid algorithm. Details on
the discretization and solution procedure, as well as more extensive convergence studies can be found in [4]. Readers
interested in obtaining a copy of the programs should make enquiries to the first author.

To illustrate the effect that the damping term has on the solution we present some convergence studies. We force
the equations so that the true solution is known. In two space dimensions the equations are forced so that the exact
solution will be

( sin?(fx) sin(2fy) cos(2nt) , —sin(2fz) sin’(fy) cos(2mt) ) ,
Pirue(T,y,t) = sin(fz)sin(fy) cos(27t) .

Utrue (.’E, Y, t)
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We solve this problem using the fourth-order and second-order methods, with and without the damping term
turned on. The domain is taken to be the unit square will all boundaries being walls where the velocity is specified.
The results are for the fourth-order method are given in tables 1 and 1 while the results for the second-order method
are summarized in tables 1 and 1. Indicated are the maximum errors in u, p and V - u. The divergence is calculated
as V4 - U; at all interior and boundary points. The estimated convergence rate o, error < h?, is also shown. ¢ is
estimated by a least squares fit to the maximum errors given in the table.

The results show that although the methods are converging at the expected rates without the damping term, the

errors are significantly reduced when damping term is used.

Error in Error in Maximum in
Grid u P V-u
20x 20 | 9.3 x107* | 8.0 x 1073 2.2 x 1072
30x30 [ 12x1077[14x1073 | 24x1073
40 x40 | 2.8 x107° | 4.3 x 10~* 5.1 x 10~
o 5.0 4.2 5.4

Table 1: 4th order, errors for flow in a square at t = 1., with divergence damping, Cy = 1, and estimated convergence

rate, e x h?, (f =1, v = .05)

Error in Error in Maximum in
Grid u P V-u
20%x20 | 24x103[13%x10 2| 6.4x10 2
30x30 | 51x107%F[25%x10°3 ] 1.3x102
40x40 | 1.7 x107% | 82x107* | 44x103
o 3.8 4.0 3.9

Table 2: 4th order, errors for flow in a square at ¢ = 1., with no divergence damping, Cy = 0, and estimated

convergence rate, e < h?, (f =1, v = .05)

Error in Error in Maximum in
Grid u P V-u
20x 20 | 24x 102 | 6.6 x 1072 3.0x 1071
30x30 [12x10°2[22x10°2 | 7.6x102
40x40 [ 6.2x1072 | 1.1 x 1072 2.9 x 1072
o 2.0 2.6 3.4

Table 3: 2nd order, errors for flow in a square at t = 1., with divergence damping, Cy = 1, and estimated convergence
rate, e x h?, (f =1, v = .05)

In figure (1) we show results from a three-dimensional computation of the flow around a double ellipsoid. The
computation was performed with the second-order accurate discretization. When the damping term was turned on,
C4 =1, the Ly norm of the divergence was about 3.1 x 1072 and |Vu| = 26. If the damping term was then set to
C4 = 0 and the code run for some time, the Ly norm of the divergence increased to 6.1 x 1072.
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Figure 1: Flow past a double ellipsoid, contours of u
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